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Abstract 

X-ray absorption near-edge structure (XANES) and x-ray emission spectroscopy (XES) 

measurements were used to investigate the effect of Mg doping in ZnO nanorods. The intensities of the 

features in the O K-edge XANES spectra of Zn1-xMgxO nanorods are lower than those of pure ZnO 

nanorods, suggesting that Mg doping increases the negative effective charge of O ions. XES and 

XANES spectra of O 2p states indicate that Mg doping raises (lowers) the conduction-band-minimum 

(valence-band-maximum) and increases the bandgap. The bandgap is found to increase linearly with the 

Mg content, as revealed by photoluminescence and combined XANES and XES measurements. 

 

PACS Number: 78.70.Dm; 73.63.-b; 61.46.-w 
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1. Introduction 

The wide bandgap II-VI semiconductor alloy, ZnMgO, has attracted extensive interest in recent 

years because of its fundamental and technological importance in ZnMgO/ZnO-based superlattice 

structures.1-3 The photoluminescence (PL) measurements of Mg doped ZnO nanowires/nanorods 

revealed a blueshift in near-band-edge (NBE) emission as the Mg content is increased,4-6 suggesting that 

this material may be suitable for use in tunable electronic and optical nanodevices. Raman spectra 

indicated that the disorder associated with the incorporation of Mg dopants enhanced exciton 

localization and asymmetrically broadened the phonon line-shapes of Zn1-xMgxO nanocrystals.7 The 

extended x-ray absorption fine structure (EXAFS) also demonstrated that the blueshift of the bandgap 

(Eg) of Zn1-xMgxO thin films was associated with the increase of the structural distortion/disorder.8 

Although PL measurements have revealed the blueshift in Eg in the Zn1-xMgxO alloys, the engineering 

of Eg by altering the electronic density of states (DOSs) at/near conduction-band-minimum (CBM) and 

valence-band-maximum (VBM) by doping Mg to ZnO nanomaterials has not been extensively 

investigated.9-11 Knowledge of the dependence of the electronic structures of Zn1-xMgxO nanomaterials 

on Mg doping is crucial to understanding the basic physics that underlie their nanotechnological 

applications. Chang et al. attempted to elucidate the correlation between the electronic structures and the 

optical properties of Zn1-xMgxO nanorods.10 Here, a combination of PL, EXAFS, x-ray absorption 

near-edge structure (XANES) and x-ray emission spectroscopy (XES) was used to investigate the 

increase of Eg by the doping of Mg in ZnO nanorods. 
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2. Experimental details 

O and Mg K-edge, Zn L3-edge XANES and Zn K-edge EXAFS spectra were obtained in the 

fluorescence mode, using the high-energy spherical grating monochromator-20A, Dragon-11A and 

wiggler-17C beamlines, respectively, at the National Synchrotron Radiation Research Center in 

Hsinchu, Taiwan. The XES and corresponding XANES measurements at the O K-edge were carried out 

at beamline-7.0.1 at the Advanced Light Source, Lawrence Berkeley National Laboratory. The angle of 

incidence of the incoming photon with respected to the normal direction of the sample’s surface was 

approximately 370. The resolutions were set to 0.1-0.2eV at a photon energy of 530-1300eV during 

XANES measurements, while the resolution of the XES measurement was set to ~0.35eV. The 

well-aligned Zn1-xMgxO (x= 0, 0.03, 0.07, 0.10 and 0.12) nanorods were prepared on the Si(100) 

substrate using catalyst-free metalorganic chemical vapor deposition. Room-temperature PL spectra 

were obtained using the emission of the Xe lamp with a wavelength of 325nm. The size of Zn1-xMgxO 

nanorods was measured using high-resolution transmission electron microscopy (HR-TEM). The 

nanorods had a diameter of ~50±10 nm and a length of ~450±10 nm. Heo et al. reported that due the 

limited solubility of Mg in ZnO, ZnMgO nanostructures may grow in a core-shell structure with a low 

Mg core surrounded by a shell with a higher Mg content.12 Therefore, Zn1-xMgxO nanorods were also 

characterized using HR-TEM. Analyses of the bottom, middle and top regions of the nanorods show an 

absence of segregated structures of the impurity phase, indicating that Zn1-xMgxO nanorods have mainly 

a single-phase structure. Details of the preparation and characterization of Zn1-xMgxO nanorods have 

been presented elsewhere.5  
 3



3. Results and discussion 

The inset (a) in Fig. 1 presents the scanning electron microscopic (SEM) image of Zn0.97Mg0.03O 

nanorods. X-ray diffraction (XRD) patterns in inset (b) reveal that the doping of Mg does not change the 

wurtzite structure of host ZnO nanorods. Zn1-xMgxO nanorods show a predominant (002) reflection at 

~34.50, indicating that the nanorods are preferentially oriented along the c-axis. Evidently, the XRD 

spectra of the Zn1-xMgxO nanorods do not exhibit any Bragg peak of MgO or Mg metal, further 

supporting the HR-TEM observation that Zn1-xMgxO nanorods have mainly a single-phase structure, 

without MgO phase segregation or the formation of a Mg core-shell structure in Zn1-xMgxO nanorods, as 

proposed by Heo et al.12 Inset (c) shows the NBE emission in the PL spectra of Zn1-xMgxO nanorods, 

clearly indicating that the shifts of the PL-maximum position from ~3.3 (x= 0) to 3.5 eV (x= 0.12). This 

blueshift in the NBE emission cannot be caused by the quantum confinement effect, because the sizes of 

the Zn1-xMgxO nanorods in all of the samples are almost the same and are far beyond the quantum 

confinement regime. Figure 1 also presents the Fourier transform (FT) of EXAFS k3χ data at the Zn 

K-edge. The general line-shapes and radial distribution of the FT spectra of Zn1-xMgxO nanorods are 

similar to those of pure ZnO nanorods, suggesting Mg is substituted at the Zn sites. The first two main 

peaks in the FT spectra correspond to the nearest-neighbor Zn-O and the next-nearest-neighbor 

Zn-Zn/Zn-Mg bond lengths,8 respectively. Their overall intensities decrease as the Mg content in the 

Zn1-xMgxO nanorods increases, which can be due to the increase of the structural disorder/distortion at 

the Zn sites in the Zn1-xMgxO nanorods. Park et al. observed a similar trend for Zn1-xMgxO thin films.8
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Figure 2(a) presents the normalized O K-edge XANES spectra of Zn1-xMgxO nanorods. Features 

A1-E1 of Zn1-xMgxO nanorods are attributable to electron transitions from O 1s to unoccupied O 2pπ 

(along the c-axis) and O 2pσ (in the bi-layer) states.9,13,14 The line-shapes of the O K-edge XANES 

spectra of Zn1-xMgxO nanorods are very similar to those of ZnO nanorods (x= 0). However, the overall 

intensities of the features of Zn1-xMgxO nanorods are lower than those of ZnO nanorods, reflecting the 

reduction in the number of unoccupied O 2p-derived states. The decrease in the O K-edge XANES 

intensity suggests an increase in the occupation of the O 2p-orbitals or the number of electrons in O ions. 

The increase in the number of electrons in O ions by Mg doping is understandable, because Mg has a 

significantly smaller electronegativity (1.31) than that of Zn (1.65),15 such that more electrons are 

transferred from Mg to the O 2p states, and the ionic character of the Zn1-xMgxO alloys is increased.10,11 

Previous studies of Zn1-xCoxO nanorods indicated that the intensity of the O K-edge XANES feature 

decreases as the Co content increases,9 despite the fact that Co has an electronegativity that is larger 

than that of Zn. This can be understood by the fact that Co has additional 3d states, which are absent 

from Mg. The decrease in intensity due to Co doping can be interpreted as being caused by O 2p-Co 3d 

hybridization, which lowers the energies of O 2p orbitals, enhancing the occupation of O 2p orbitals. 

The higher O 2p occupation associated with smaller electronegativity of Mg is consistent with the 

higher the intensity of the valence-band photoemission spectra in Fig. 4 of Ref. 9. The inset in Fig. 2(a) 

shows that the threshold in the O K-edge XANES spectra moves slightly toward higher energy as the 

Mg content in the Zn1-xMgxO nanorods increases. Figure 2(b) presents the normalized Mg K-edge 

XANES spectra of Zn1-xMgxO. The partial DOSs calculated using the CASTEP code,16 based on the 
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plane-wave pseudopotential method with the local density approximation for Zn1-xMgxO,10 indicates 

that the three main features, A2-C2, are associated primarily with Mg 3p-O 2p hybridized states. The 

intensities of features A2-C2 clearly increase with the Mg content, suggesting that the increase in the 

number of unoccupied Mg 3p-derived states is associated with the transfer of electrons from Mg to O 

atoms as the Mg content increases, in a manner consistent with the O K-edge XANES measurements. 

The inset in Fig. 2(b) also presents the normalized Zn L3-edge XANES spectra of Zn1-xMgxO nanorods, 

which reveal electron transitions from Zn 2p states to unoccupied Zn 4sd states.9,13,17 Figure 2(b) shows 

that the unoccupied Zn 4sd states are insensitive to Mg doping. Indeed, the calculated unoccupied 

partial DOSs of Zn 4s states in Ref. 10 for Zn1-xMgxO are similar to that for ZnO.  

Figure 3 displays XES and corresponding XANES spectra of O 2p states of Zn1-xMgxO nanorods. 

The maximum intensities of the features in the XES and XANES spectra were arbitrarily normalized to 

unity. The O Kα-emission spectra reflect O 2p occupied (valence-band) states and O K-edge XANES 

spectra reflect O 2p unoccupied (conduction-band) states of Zn1-xMgxO nanorods. The spectra in Fig. 3 

are similar to those of ZnO nanoparticles reported elsewhere.18 A well-defined bandgap, Eg, indicated by 

the dotted lines is obtained by extrapolating the leading edges in the XANES and XES spectra to the 

baselines, which correspond to the CBM and VBM,18,19 respectively. Apparently, the threshold in the O 

K-edge XANES (O Kα XES) spectra overall moves slightly toward higher (lower) energy as the Mg 

content is increased, as can be seen on the magnified scale in inset (a) [inset (b)]. This result is 

consistent with the measurements shown in Fig. 2(a). Nevertheless, the combined emission and 

absorption spectra demonstrate that Eg is ~3.3eV for pure ZnO nanorods and systematically increases 
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with the Mg content in the Zn1-xMgxO nanorods, as plotted in inset (c). These results are consistent with 

the general trend of NBE emission that was revealed by PL measurements [data obtained from inset (c) 

in Fig. 1]. The Eg values that were determined from the combined XES and XANES measurements were 

slightly larger than those determined from the NBE emission data. Since NBE emission is the result of 

free exciton emission,10 the difference between Eg values and emission data, ΔΕg, can be attributed to the 

difference between the energy of CBM and the exciton level, which is approximately tens of meV in 

Zn1-xMgxO nanorods. The ΔΕg of ~40meV for x= 12%, is the largest for any Zn1-xMgxO nanorods. 

Recently, temperature-dependent PL studies have found that the exciton was bound by an energy of 

50-60meV (depending on Mg doping) in Zn1-xMgxO nanorods,20 suggesting that ΔΕg ~50-60 meV. The 

discrepancy may be due to the limited of the energy resolutions of the XES and XANES measurements 

~0.35eV and 0.1eV respectively.  

Several factors are believed to affect the shifts of NBE emission in the PL spectra of Zn1-xMgxO 

alloys upon the doping of ZnO with Mg. Excitonic transitions (exciton-related recombination), 

alloy-induced structural disorder/distortion effects, quantum confinement, surface effects/defects and 

bulk defects, such as oxygen vacancies, are present.6-8,21,22 The FT analysis of EXAFS results suggests 

Mg-induced structural disorder/distortion at the Zn sites in Zn1-xMgxO nanorods. Structural 

disorder/distortion typically is responsible for potential fluctuation in the alloy, enhancing excitonic 

transition.7 This phenomenon may be related to native defects in the ZnMgO alloy, since Mg doping 

shifts CBM toward higher energy, away from the intrinsic shallow donor states, and increases the 

activation energy of defect donors, increasing the emission-energy in the PL spectra.23,24 Importantly, 
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combining O Kα XES and the corresponding O K-edge XANES spectra in Fig. 3 demonstrates that the 

increase in Eg, is associated with the shifts in CBM (VBM) toward higher (lower) energy upon the 

doping of host ZnO nanorods with Mg. Previous theoretical calculations have indicated that the widths 

of both O 2p and Zn 3d bands become narrower and their partial DOSs near the top of valence bands 

increase with the increase of x in Zn1-xMgxO,10 suggesting that Mg-induced enhancement of the 

localization of O 2p and Zn 3d states as well as the ionic character of Zn1-xMgxO. As a result, the 

screening effect is reduced and the exciton energy is increased, which may explain the linear increase of 

ΔΕg in the inset of Fig. 3. 

 

4. Conclusion 

O K-edge XANES measurements suggest that Mg doping increased the negative effective charge 

of oxygen ions. O K-edge XES and XANES spectra demonstrate that Mg doping raises and lowers 

conduction- and valence-band edges, respectively, thus increasing Eg. Both PL and combined XES and 

XANES measurements show that Eg increases linearly with Mg content. 
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Figure Captions 

Fig.1 Magnitude of FT of EXAFS k3χ data at the Zn K-edge of Zn1-xMgxO nanorods. Insets (a)-(c) 

present, SEM image (x= 0.03), XRD patterns and PL spectra of Zn1-xMgxO nanorods, respectively. 

 

Fig. 2(a) Normalized O K-edge XANES spectra of Zn1-xMgxO nanorods. The inset shows a magnified 

view of edge features of O K-edge XANES spectra. (b) Normalized Mg K-edge XANES spectra of 

Zn1-xMgxO nanorods. The inset presents normalized Zn L3-edge spectra of Zn1-xMgxO nanorods. 

 

Fig. 3 XES and corresponding XANES of O 2p states of Zn1-xMgxO nanorods. Insets (a) and (b) show 

magnified views of edge features of O K-edge XANES and O Kα XES spectra, respectively. Inset (c) 

plots Eg and NBE emission data [inset (c) in Fig. 1] for various Mg content. 
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